

Functional fillers

Neuburg Siliceous Earth

Product information

Products	3
Morphology	4
Separation process	6
Particle size distribution Sillitin Silfit	8
Color neutrality Sillitin Silfit	9
Product characteristics Sillitin	10
Product characteristics Puriss	12
Product characteristics Aktisil	14
CIELAB color values and functionalization Silfit Aktifit	16
Product characteristics Silfit Aktifit	18
Product characteristics Gloxil matt SL	20
Packaging	22
Testing methods	24

Sillitin

Standard products (natural, untreated fillers). Differ in brightness and particle size distribution.

Puriss

Created by a downstream process. The extremely low residue > 40 μm particles is reduced even more and the dispersion properties are improved.

Aktisil

Surface-treated products. Neuburg Siliceous Earth treated with additives.

Silfit

Calcined products based on Sillitin. A downstream thermal process gives the product additional application advantages as a functional filler.

Aktifit

An activated Silfit produced through surface treatment with special additives.

Gloxil matt SL

Gloxil matt SL is a 15% aqueous silica dispersion modified with special additives adapted to the matting agent and the intended application.

Classic Neuburg Siliceous Earth is a natural combination of corpuscular Neuburg Silica and lamellar kaolinite: a loose mixture impossible to separate by physical methods. As a result of natural aging, the silica portion exhibits a round grain shape and consists of aggregated cryptocristalline primary particles of about 200 nm diameter. Such a unique structure is responsible for a relatively high specific surface area and oil absorption, which result, besides rheological activity, also in a whole range of application properties.

Our calcined products Silfit and Aktifit are based on the standard product Sillitin Z 86. A thermal process is used to expel the crystalline water in the kaolinite portion and new mineral phases are formed practically amorphous. The silica portion remains inert at the temperature used. The resulting products have an outstandingly high degree of white and color neutrality.

Basically speaking, our entire production process is a process of separation – only about 30% of the raw earth extracted is a usable fine product.

A particularly structure-conserving process separates the fine product from sand, sundry stones and rocks. In the first step, the raw material is dispersed in water and thus separated from gravel fractions. This is followed by the hydrocyclone unit which

separates the sand fractions and divides the fine particles into different particle sizes. The slurry obtained is then concentrated and the water removed in filter presses. Finally, the natural gas powered turbine dryers remove the remaining moisture. The material is then pulverized and stored for further processing.

The particle size distribution, color value graphs and overview tables on the following pages show the physical properties and chemical composition of Neuburg Siliceous Earth. The most significant differentiating characteristics are particle size distribution and color neutrality.

Neuburg Siliceous Earth is available in four different particle fractions, identified by the letters V, N, Z and P.

D (x) in % 100 90 80 70 60 50 40 30 20 10 20 10 0.5 0.2 0.1 ● Sillitin V ● Sillitin N ● Sillitin Z/Silfit Z ● Sillitin P

In addition, classic Neuburg Siliceous Earth is available in different shades and colors ranging from yellow to off-white to white depending on the particle size distribution. This color neutrality is expressed in numbers.

Sillitin

Product characteristic	Unit	Sillitin V 85	Sillitin V 88	Sillitin N 75	Sillitin N 85	Sillitin N 87	Sillitin Z 86	Sillitin Z 89	Sillitin P 87
Color values L* a* b*		93.5 1.0 9.0	95.0 0.5 5.0	88.0 4.5 20.0	93.5 1.0 9.0	94.0 1.0 9.0	94.0 1.0 9.5	96.1 0.2 4.2	94.5 0.9 9.0
$\begin{array}{cc} \text{Particle size} & \text{D}_{50} \\ & \text{D}_{97} \end{array}$	μm μm	5.0 18	5.0 18	3.0 16	3.5 17	3.5 17	2.1 9.5	2.1 9.5	1.5 6.5
Residue > 40 µm	mg/kg	30	30	25	25	25	20	20	20
Volatile matter at 105 °C	%	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Electrical conductivity	μS/cm	80	80	80	80	80	80	80	80
pH value		8.7	8.7	8.5	8.7	8.7	8.7	8.7	8.7
Density Bulk density Tamped density	g/cm ³ g/cm ³ g/cm ³	2.6 0.35 0.60	2.6 0.35 0.60	2.6 0.30 0.50	2.6 0.30 0.50	2.6 0.30 0.50	2.6 0.25 0.40	2.6 0.25 0.40	2.6 0.25 0.40
Spec. surface area (BET) Oil absorption	m ² /g g/100 g	10 45	9 45	12 45	11 45	11 45	13 55	11 55	14 55
Hardness silica/kaolinite Abrasivity	mg	7/2.5 40	7/2.5 40	7/2.5 40	7/2.5 35	7/2.5 35	7/2.5 30	7/2.5 30	7/2.5 25
Refractive index n		1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55
Water solubility Acid solubility	%	< 0.5 < 1							
Chemical analysis: SiO ₂ Al ₂ O ₃ Fe ₂ O ₃	% % %	87 8 < 1	88 8 < 1	83 10 < 2	84 10 < 1	84 10 < 1	82 12 < 1	82 12 < 1	80 14 < 1
Mineralogical composition: Neuburg Silica Kaolinite Amorphous mineral phases Other minerals	% % % %	70 17 8 5	70 17 8 5	60 25 10 5	65 20 10 5	65 20 10 5	60 25 10 5	60 25 10 5	55 30 10 5

The values shown in the table are to be considered as guide values only.

Material specifications for each product are binding and are available on our website
www.hoffmann-mineral.com.

EINECS no.: 310-127-6

CAS no.: 1020665-14-8 (Siliceous Earth)
CAS no.: 7631-86-9 (silica), 1318-74-7 (kaolinite)
TSCA no.: 7631-86-9 (silica), 1318-74-7 (kaolinite)

- The extremely low residue of $> 40 \mu m$ is significantly reduced even more
- Reduction of wear when processing through optimum dispersion in low viscosity compounds
- puriss products are the #1 choice for extremely high requirements in terms of dispersion performance and surface quality for application in elastomers and thermoplastic elastomers:
- low viscosity compounds with high dose of plasticizer
- extremely thin-walled products like membranes
- printing roller coverings, printing stencils, offset printing blankets
- low durometer automotive profiles with Class A surface quality

Stirred with blade mixer 1200 rpm, 20% filler concentration, grain size (Hegman gauge) ≤ 20 µm.

					VA
Product characteristic	Unit	Sillitin N 85 puriss	Sillitin Z86 puriss	Sillitin Z89 puriss	Sillitin P 87 puriss
Color values L*		93.5	94.0	96.1	94.5
a*		1.0	1.0	0.2	0.9
b*		9.0	9.5	4.2	9.0
Particle size D ₅₀	μm	3.0	1.9	2.1	1.5
D ₉₇	μm	16	9	9.5	6
Residue > 40 μm	mg/kg	8	8	8	8
Volatile matter at 105 °C	%	0.5	0.5	0.5	0.5
Electrical conductivity	μS/cm	80	80	80	80
pH value		8.7	8.7	8.7	8.7
Density	g/cm ³	2.6	2.6	2.6	2.6
Bulk density	g/cm ³	0.28	0.23	0.20	0.20
Tamped density	g/cm ³	0.48	0.37	0.34	0.34
Oil absorption	g/100g	45	55	55	55
Hardness silica/kaolinite		7/2.5	7/2.5	7/2.5	7/2.5
Abrasivity	mg	35	30	30	20
Refractive index n		1.55	1.55	1.55	1.55
Water solubility	%	< 0.5	< 0.5	< 0.5	< 0.5
Acid solubility	%	< 1	< 1	< 1	< 1
Dispersion time	min	3	7	7	8
in ester plasticizer	111111			,	
Chemical analysis:					
SiO ₂	%	84	82	82	80
AI_2O_3	%	10	12	12	14
Fe ₂ O ₃	%	< 1	< 1	< 1	< 1
Mineralogical composition:					
Neuburg Silica	%	65	60	60	55
Kaolinite	%	20	25	25	30
Amorphous mineral phases	%	10	10	10	10
Other minerals	%	5	5	5	5

The values shown in the table are to be considered as guide values only. Material specifications for each product are binding and are available on our website www.hoffmann-mineral.com.

Aktisil

These special fillers are made by treating the surface of Neuburg Siliceous Earth with additives.

			—			~	—	
Product characteristic	Unit	Aktisil AM	Aktisil MAM	Aktisil PF 216	Aktisil PF 777	Aktisil Q	Aktisil VM 56	Aktisil VM 56/89
Basic material Sillitin		Z 86	V 88	Z 86	Z 86	V 90 ¹	Z 86	Z 89
unctionalization		Amino	Methacrylic	Tetrasulfane	Alkyl	Methacrylic	Vinyl	Vinyl
Color values L*		94.0	94.9	94.0	93.8	94.5	94.0	96.0
a*		1.0	-0.2	1.0	1.0	0.3	1.0	0.2
b*		10.0	4.0	10.0	10.0	4.0	10.0	3.7
Particle size D ₅₀	μm	2.4	4.5	2.4	2.4	5.0	2.4	2.4
D ₉₇	μm	12	18	12	12	18	12	12
Residue > 40 μm	mg/kg	30	20	15	20	25	15	15
/olatile matter at 105 °C	%	0.3	0.2	0.3	0.3	0.3	0.5	0.5
Density	g/cm ³	2.6	2.6	2.6	2.6	2.6	2.6	2.6
Bulk density	g/cm ³	0.22	0.45	0.25	0.25	0.45	0.25	0.25
Spec. surface area (BET)	m²/g	10	7	10	9	6	9	8
Oil absorption	g/100 g	60	45	60	40	43	45	45
Vater absorption	ml/g	not specified	0.9	≤ 0.1	≤ 0.1	0.5	not specified	not specified
Reactive		✓	✓	✓		✓	✓	✓
lydrophobic				✓	✓			

¹ internal product quality

The values shown in the table are to be considered as guide values only. Material specifications for each product are binding and are available on our website **www.hoffmann-mineral.com.**

Aktifit AM

Silfit | Aktifit

With regard to the CIELAB Color Values L^* , a^* and in particular b^* , the calcined products are significantly brighter and more color neutral than the basic material.

Neuburg Siliceous Earth

Silfit | Aktifit

Product characteristic	Unit	Silfit Z 91	Aktifit AM	Aktifit PF 111	Aktifit PF 115	Aktifit Q	Aktifit VM
Basic material		Sillitin Z 86	Silfit Z 91				
Functionalization		_	Amino	Alkyl	Amino	Methacrylic	Vinyl
Color values L*		96.5	96.3	96.3	95.7	96.3	96.3
a*		-0.2	-0.1	-0.1	0	-0.1	-0.1
b*		1.0	1.1	1.0	1.0	1.1	1.0
Particle size D ₅₀	μm	2.1	2.3	2.3	2.3	2.3	2.3
D ₉₇	μm	9.5	11	11	11	11	11
Residue > 40 μm	mg/kg	10	10	10	10	20	10
/olatile matter at 105 °C	%	0.2	0.2	0.2	0.1	0.2	0.1
Electrical conductivity	μS/cm	20	60	not applicable	not applicable	not applicable	not applicable
Density	g/cm ³	2.6	2.6	2.6	2.6	2.6	2.6
Bulk density	g/cm ³	0.3	0.31	0.35	0.35	0.35	0.37
Tamped density	g/cm ³	0.55	0.55	0.65	0.7	0.6	0.7
Spec. surface area (BET)	m²/g	10	9	9	9	8	10
Oil absorption	g/100 g	65	65	55	60	65	65
Silica hardness/calcined kaolinite		7/4.5	7/4.5	7/4.5	7/4.5	7/4.5	7/4.5
Refractive index n		1.55	1.55	1.55	1.55	1.55	1.55
Water solubility	%	< 0.5	< 0.5	not applicable	not applicable	not applicable	not applicable
Acid solubility	%	< 1	< 1	not applicable	< 1	not applicable	not applicable
pH value		6.5	not applicable				
Water absorption	ml/g	not specified	not specified	≤ 0.1	≤ 0.1	≤ 0.1	≤ 0.1
Chemical analysis: SiO ₂	%	86	86	86	86	86	86
Al_2O_3	%	13	13	13	13	13	13
Fe ₂ O ₃	%	< 1	< 1	< 1	< 1	< 1	< 1
Mineralogical composition:							
Neuburg Silica	%	60	60	60	60	60	60
Calcined kaolinite	%	40	40	40	40	40	40
Equilibrium moisture content at 25 °C							
and 50% relative humidity	%	0.12	0.11	0.07	0.04	0.04	0.05
and 80% relative humidity	%	0.22	0.29	0.10	0.06	0.06	0.07
and 90% relative humidity	%	0.54	0.55	0.13	0.07	0.07	0.08
Reactive			\checkmark		✓	✓	✓

The values shown in the table are to be considered as guide values only. Material specifications for each product are binding and are available on our website **www.hoffmann-mineral.com.**

EINECS no.: 310-127-6

TSCA no.: 7631-86-9 (silica),

92704-41-1 (kaolin, calcined)

CAS no.: 1214268-39-9 (Siliceous Earth, calcined)

CAS no.: 7631-86-9 (silica),

92704-41-1 (kaolin, calcined)

Product characteristics

Gloxil matt SL

Gloxil matt SL is the first functional filler from the Tailored Filler Solutions product line. It's a 15% aqueous silica dispersion modified with special additives adapted to the matting agent and the intended application. The formation of films from the dispersion improves the incorporation of the matting agent particles. This results in films with good water and stain resistance as well as excellent matting properties.

Product characteristic	Unit	Gloxil matt SL
Particle size D ₅₀	μm	8–11
pH value		6–7.5
Residue > 40 μm	mg/kg	< 5
Silica content	%	15
Appearance		white, pasty

Applications of Gloxil matt SL

- Matt dispersion-based coating, primarily clear wood varnishes, especially acrylic-based varnishes
- Substitution of matting agents for improved handling as well as water, alcohol and stain resistance

Advantages for users

- > no dust formation
- significantly improved dosing and incorporation
- faster and easier incorporation without high shear forces
- > foam inhibiting effect
- > improved early blocking resistance
- very high transparency without color cast and good long-term stability
- > strong matting effect
- good wood grain, especially on dark wood
- outstanding early water and stain resistance
- subsequent addition to modify the degree of matting possible without loss of performance or problems
- excellent metal marking resistance (ring resistance)

The values shown in the table are to be considered as guide values only. Material specifications for each product are binding and are availableon our website **www.hoffmann-mineral.com**.

Product	Paper bag	EVA-bag	Big Bag Type 1/ Type 2/Type 3	Bulk
Sillitin				
Sillitin V 85	25 kg	10 to 25 kg	≤750/850/1200 kg	≤ 25 t
Sillitin V 88	25 kg	10 to 25 kg	≤750/850/1200 kg	≤ 25 t
Sillitin N 75	25 kg	10 to 25 kg	≤750/850/1200 kg	≤ 25 t
Sillitin N 85	25 kg	10 to 25 kg	≤750/850/1200 kg	≤ 25 t
Sillitin N 87	25 kg	10 to 25 kg	≤750/850/1200 kg	≤ 25 t
Sillitin Z 86	25 kg	10 to 20 kg	≤600/750/1000 kg	≤ 22 t
Sillitin Z 89	25 kg	10 to 20 kg	≤550/700/900 kg	≤ 22 t
Sillitin P 87	25 kg	10 to 20 kg	≤550/700/900 kg	≤22 t

Puriss

Sillitin puriss	25 kg	_	_	_
Sillitin P 87 puriss	20 kg	_	_	_

Aktisil

Aktisil AM	25 kg	10 to 20 kg	≤ 550/700/900 kg	-
Aktisil MAM-	25 kg	10 to 25 kg	≤ 550/700/900 kg	-
Aktisil PF 216	25 kg	10 to 20 kg	≤ 550/700/900 kg	-
Aktisil PF 777	25 kg	10 to 20 kg	≤550/700/900 kg	-
Aktisil Q	25 kg	10 to 25 kg	≤ 550/700/900 kg	_
Aktisil VM 56	25 kg	10 to 20 kg	≤550/700/900 kg	≤ 24 t
Aktisil VM 56/89	25 kg	10 to 20 kg	≤550/700/900 kg	-

	Paper		Big Bag Type 1/	
Product	bag	EVA-bag	Type 2/Type 3	Bulk

Silfit

Silfit Z 91	25 kg	10 to 20 kg	≤ 600/750/900 kg	on request

Aktifit

Aktifit AM	25 kg	on request	≤ 600/750/900 kg	on request
Aktifit PF 111	25 kg	on request	on request	_
Aktifit PF 115	25 kg	on request	on request	_
Aktifit Q	25 kg	on request	on request	_
Aktifit VM	25 kg	on request	≤ 550/900/- kg	_

Gloxil

Gloxil matt SL	on request	

Product characteristic		Testing method	
Color values L* a* b*		acc. to CIELAB	
Particle size D ₅₀ D ₉₇		acc. to ISO 13320	
Residue > 40 μm		acc. to DIN EN ISO 787 part 18	
Volatile matter at 105 °C		acc. to DIN EN ISO 787 part 2	
Density Bulk density Tamped density		acc. to DIN EN ISO 787 part 10 acc. to DIN ISO 903-1976 acc. to DIN EN ISO 787 part 11	
Spec. surface area (BET) Oil absorption		acc. to DIN ISO 9277 acc. to DIN EN ISO 787 part 5	
Water absorption		acc. to Baumann	
Hardness silica/kaolinite Abrasivity		acc. to Mohs acc. to Einlehner	
Refractive index n		sin α/sin β	
Water solubility Acid solubility		acc. to DIN EN ISO 787 part 3 acc. to DIN 53 770 (0.1 N HCI)	
pH value		acc. to DIN EN ISO 787 part 9	
Chemical analysis:	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃	acc. to DIN 51001 (RFA)	
Mineralogical composition	: Corpuscular silica Amorphous mineral phases Kaolinite and other minerals	based on X-ray diffraction pattern analysis combined with Rietveld	
Equilibrium moisture conte	ent at 25 °C and 50% relative humidity and 80% relative humidity and 90% relative humidity	following DIN 66138	
Dispersion time in ester pla	asticizer	UGR-PV/PT/67	

To find out more about the applications, close the brochure now and turn it so that the application section is in front of you.

Neuburg Siliceous Earth Product information Paints and varnishes Reactive resins Adhesives and sealants Applications

Functional fillers

Paints and varnishes Reactive resins Adhesives and sealants

Applications

Contents

Image source

Product information	Page	Source			
Application of Gloxil WW SL	21	deepblue4you		Advantages in paints and varnishes	4
Applications	Page	Source		Applications in paints and varnishes	
Electrophoretic coatings	8	jeson		Aktisil Aktifit	6
Coil Coating	9	www.fotostudio-eder.at		ARCHOTT	U
Primer-surfacer	10	bhakpong		Advantages and product recommendation	
Corrosion protection coatings	12	carballo		Metal coatings	8
Topcoat ACE	15	Copyright (c) 2020 bogdanhoda/ Shutterstock		Wood and film coatings	18
Powder coatings	16	Wiski – Fotolia		Plastic coatings	21
UV/excimer curing coatings and clear coatings for wood and films	18	© by Dariusz T. Oczkowicz, ars digital media services		Construction coatings and decorative paints	24
Dispersion-based clear wood coatings	19	Barbara Pheby – Fotolia		Advantages in reactive resins, adhesives and sealants	30
Exterior top coats and breathable primers	20	Marco2811 – Fotolia			
Plastic topcoats	21	bogdan ionescu – Shutterstock (Stock-Foto ID: 163413089)		Applications in reactive resins, adhesives and sealants Aktisil Aktifit	32
Screen printing inks	21	Pröll GmbH			
Soft-feel coatings	22	@denismers		Advantages and product recommendation	
Plastic primers	23	SREEDHAR YEDLAPATI – Fotolia		Reactive resins	34
Solder resist inks	23	netzfrisch.de – Fotolia		2K Polyurethane applications	40
Road marking paints	24	Ingo Bartussek – Fotolia		Plastisols	45
Dispersion coatings for concrete for roofs and balconies	25	Alexandre Zveiger, www.photobank.ch, 6900 Lugano, Switz		Adhesives	46
Interior dispersion paints	26	Sabine Katzenberger			
Interior dispersion paints with special properties	27	This image is property of Franck Boston			
Façade paints	28	seen – Fotolia			
Silicate and dispersion silicate paints	29	©guerrieroale - stock.adobe.com			
Gel coats	34	Italianphotoagency – Fotolia			
Acrylic sinks	35	Aleksey Matrenin			
Stereolithography (SLA), UV-curing	35	luchschenF			
Industrial flooring based on epoxy resin	36	jkitan@mail.ru			
Mortar, grouting, coatings with the highest chemical resistance	38	trabantos			
Coatings, sealants, adhesives, tooling resins	40	Bjoern Wylezich			
Sports surfaces/sealers	41	jarma – Fotolia			
Pipeline coating	42	Spencer Coatings Ltd			
Sealants and membranes, free-flowing to non-sagging	43	bofotolux			
Roller coverings	44	Uros Petrovic			
Moldmaking compounds and molds for precast concrete components	44	imageegami			
Coatings	45	tournee – Fotolia			
Polychloroprene adhesives	46	baratroli		Dublishor	
Paper adhesives (Dispersion-based)	46	Cpro – Fotolia		Publisher:	
Adhesives for wind turbine rotor blades	47	© Corbis. All Rights Reserved.		HOFFMANN MINERAL GmbH	
Structural epoxy adhesives, toughened	48	ZwickRoell	980	Muenchener Strasse 75	
Moisture-curing adhesives based on STP and PUR, e.g. for parquet, car windscreens, industrial applications	49	Kadmy – Fotolia	VM-15/02.2025/06104980	86633 Neuburg a. d. Donau	
Adhesives for electronic components	50	AvokadoStudio	025/	Germany	🗘
Mounting adhesives (polyester/acrylic based)	50	microgen	12.20	Phone: +49 8431 53-0	FSC
Adhesive tapes PSA (adhesive layer)	51	osenka91	15/0	E-Mail: info@hoffmann-mineral.com	MIX www.fac.org
Laminating adhesives (films on chipboards, dispersion-based)	51	Aksenenko Olga	E VM-	www.hoffmann-mineral.com	Paper Supporting responsible forestry FSC® C014405

Properties of Neuburg Siliceous Earth	Advantages for users
easy and rapid incorporation, excellent dispersion properties (especially puriss products)	improved processability and faster paint production
very low sedimentation, no hard sediment	> enhanced product handling
good pigment dispersion (spacer effect)	improved dispersion and pigment distribution possible, thereby potential for cost reduction
good rheological properties (shear thinning, thixotropic)	adjustable rheology, individually possible depending on product selection
good transparency in clear coatings	cost reduction due to lower binder demand, prerequisite for improvement in abrasion resistance and matting
adjustable matting effect or degree of gloss	depending on product selection, degree of gloss or matting can be individually chosen
very fast drying	improved and faster processability, reduction of working time on site
easy and rapid sanding	effective post-processing, cost optimization
very low electrical conductivity, no buffer effect	no disturbing salts/electrolytes, thereby good stability of aqueous formulations and pigment pastes for electrophoresis applications
excellent edge covering	> more efficient coating in corrosion protection, cost optimization
excellent stone-chipping resistance	> high durability
good mechanical properties	> high durability
excellent scratch resistance, abrasion resistance	> high durability

Properties of Neuburg Siliceous Earth	Advantages for users
good chemical resistance	> high resistance to aggressive media
good corrosion protection/weather resistance	> extended resistance to environmental influences
surface treatment possible	> good integration into the polymer matrix, adjustable rheology control
high purity	also suitable for food contact including drinking water applications
very low carbon footprint	> significant reduction of the carbon footprint of paints and varnishes

Properties of Calcined Neuburg Siliceous Earth	Advantages for users			
low moisture, low moisture absorption	 also usable for moisture-curing systems, good stability 			
very high brightness and color neutrality	allows for transparent or white products without yellowing, increase in hiding power or reduction of the pigment content			
outstanding dispersion properties (like puriss products)	simple and fast paint production possible			
reduced influence on certain curing reactions	> fast reaction start, quick and complete reaction, less catalyst required			
reduced interaction of filler particles	> lower viscosity, good leveling			

These special fillers are based on Neuburg Siliceous Earth, the surface of which is treated with additives.

The Aktisil and Aktifit products have largely functional groups that enable covalent bonds or intensive interaction with the polymer matrix and thereby achieve control and improvement of the thin-film coating properties.

Following properties can be significantly influenced through functionalization: wetting, viscosity, yield point, leveling, gloss, reaction rate, hardness, adhesion, abrasion resistance, water absorption, water resistance, transparency, corrosion protection, chemical resistance.

Product name	Application
Aktisil AM	primers, clear and pigmented coatings with low requirements for color neutrality, powder coatings (functional epoxies, FBE), OEM primer-surfacer water-based, anti-corrosion coatings, also water-based, black direct-to-metal (DTM)
Aktisil MAM	dispersion paints with outstanding cleanability, primers, clear and pigmented coatings with high requirements for color neutrality, very easily dispersible, good leveling in mat powder coatings, very good matting effect and abrasion resistance, radically cured systems like UV wood coatings etc.
Aktisil PF 777	rheology control, strongly shear thinning, thixotropic, high yield point/ stability/non-sagging, very good adhesion; anti-corrosion coatings, adhesion primer (also water-based), generally hydrophobic coatings
Aktisil VM 56	primers, clear and pigmented coatings with low requirements for color neutrality, radically cured systems like UV coatings etc.
Aktisil VM 56/89	same as VM 56, but for higher color neutrality requirements and slightly improved dispersion

Product name	Application
Aktifit AM	similar to Aktisil AM, but with highest color neutrality and improved dispersion performance, often with lower viscosity; coil coatings (primer, back coat, top coats), OEM primer-surfacer water-based, powder coatings, anti-corrosion coatings (primers and top coats), clear coatings
Aktifit PF 111	similar to PF 777, but with highest color neutrality and improved dispersion performance, better leveling, very low moisture content with no increase in humid climatic conditions; moisture-curing coatings like 1K PU, anti-corrosion coatings and adhesion primers (also water-based), Cathodic Electrodeposition (CED), generally hydrophobic coatings
Aktifit PF 115	similar to Aktifit AM, but hydrophobic, very low moisture content without increase under humid climatic conditions; often higher viscosity at low shear rates, black Cathodic Electrodeposition (CED), also water-based anti-corrosion coatings, powder coatings polyester/primid
Aktifit Q	similar to MAM, but with higher gloss and highest color neutrality, improved dispersion properties, hydrophobic, very low moisture content without increase under humid climatic conditions; moisture-curing coatings like 1K PU, radically cured systems; like clear and pigmented UV coatings, 3D printing, etc., dispersion-based clear wood coatings and coatings for concrete with good water resistance, water-based anti-corrosion coatings based on acrylates as single layer direct-to-metal (DTM) coating
Aktifit VM	similar to VM 56 and VM 56/89, but with highest color neutrality and improved dispersion performance, hydrophobic, very low moisture content with no increase in humid climatic condition; often with lower viscosity; moisture-curing coatings like 1K PU, radically curing systems like clear and pigmented UV coatings etc., dispersion-based clear coatings for wood and concrete coatings with good water resistance

Electrophoretic coatings

Advantages:

- small particle size
- low grit content (oversized particles)
- excellent dispersion properties
- very low sedimentation, no hard sediment
- very low electrical conductivity, no disturbing electrolytes
- good flexibility (Erichsen cupping, impact)
- potential for decreasing the titanium dioxide concentration, especially in low-density systems

Coil Coating

Advantages:

- small particle size
- excellent dispersion properties
- low sedimentation
- good leveling
- good adhesion
- good scratch resistance
- retention of good weathering resistance
- retention of good flexibility
- slight matting effect (depending on formulation and dosage)
- improved hiding power/opacity or partial replacement of titanium dioxide (top coats)
- partial replacement of corrosion protection pigments (primers and back coats)

	Sillitin Z 86	Sillitin P 87	Sillitin Z 89	Silfit Z 91	Aktisil PF 777	Aktifit PF 111	Aktifit PF 115
Dispersion	•••	•••	•••	•••	••	•••	•••
Stability of the pigment paste, even at higher storage temperature ¹⁾	•••	•••	•••	••	••••	••••	••••
Sedimentation stability	•••	••••	•••	•••	•••	•••	•••
Leveling	•••	•••	•••	•••	•••	••••	•••
Gloss	•••	••••	•••	•••	•••	•••	••
Color neutrality in light/ white formulations	••	••	•••	••••	••	••••	••••
Edge covering	•••	••••	•••	• • •	•••	•••	•••
Edge covering and edge corrosion protection ¹⁾	•••	••••	•••	••••	•••	•••	•••
Flexibility (Impact Test)	•••	• • •	•••	••••	•••	•••	••••
Flexibility (Impact Test) ¹⁾	• •	• •	• •	••••	• •	• •	••••
Flexibility (Low-temperature Impact Test)	•••	•••	•••	•••	••••	•••	•••

1)typical in	formulations	for black	cathodic elect	rodenosition (CFD)

Top coats:	Silfit Z 91	Aktifit AM
Titanium dioxide extender/retention of hiding power	••••	••••
Hardness	•••	••••
Scratch resistance	•••	••••
Primers and back coats:	Silfit Z 911)	Aktifit AM ¹⁾
deaeration and leveling/suitability for the direct roller coating process	•••	••••
Moisture resistance	•••	••••

 $^{^{1)}\}mbox{up}$ to 50% replacement of the corrosion protection pigment possible

11

Metal coatings

10

Primer-surfacer

Advantages:

- small particle size
- low grit content (oversized particles)
- excellent dispersion properties
- very low electrical conductivity, no disturbing electrolytes
- good sanding, low visibility of sanding marks
- improved appearance of subsequent coating layers
- good corrosion protection
- excellent stone-chipping resistance
- gloss at high volume solids
- good storage and sedimentation stability
- potential to reduce the anti-corrosive pigments

Bright coatings/color neutrality	••	•••	••••
Generally:	Sillitin Z 86	Sillitin Z 89	Silfit Z 91

Solvent-based and car repair:	Sillitin P 87	Sillitin P 87 pu
Dispersion	••	••••
Sedimentation stability	••••	••••
Reduction of sanding marks	••••	••••

Water-based systems and automotive OEM:	Aktisil AM	Aktifit AM
Gloss at high volume solids content ¹⁾	••••	••••
Stone chip impact resistance	••••	••••
Bright coatings/color neutrality	••	••••

¹⁾especially in combination with Disperbyk 111

Water based systems for train and industry:	Aktisil AM ¹⁾	Aktifit AM ¹⁾
Viscosity	••••	••
Storage stability	••••	••••
Sedimentation stability	••••	• • •
Bright coatings/color neutrality	• •	••••
Wet adhesion	••••	• •
Reduced blistering at salt spray test	••••	••••
Corrosion protection	••••	••••
Manual sandability	••••	•••
Sandability for machine grinding at high rotation speed	•••	••••

¹⁾ good corrosion protection even without any active anti-corrosion pigments

Corrosion protection coatings

Advantages:

- excellent dispersion properties
- good rheological properties
- very low sedimentation
- low abrasivity
- fast drying
- good weathering resistance
- good corrosion protection
- good chemical resistance, especially against acids
- excellent abrasion resistance
- potential for reducing the corrosion protection pigment

Generally in corrosion protection coatings and polyaspartic systems:	Sillitin V 85	Sillitin Z 86	Sillitin Z 89	Aktisil PF 777	Aktifit PF 111
Viscosity	•	••	••	•••	•••
Sag resistance on vertical surfaces	•	••	• •	••••	••••
Gloss	••••1)	•••	•••	•••	•••
Adhesion	•••	•••	•••	••••2)	••••
Corrosion protection/salt spray test	•••	••••1)	••••1)	••••	••••
Corrosion protection/humidity test	••	•••	•••	••••2)	••••
Chemical resistance	•••	•••	•••	••••	••••
Bright coatings/color neutrality	••	••	•••	• •	••••

¹⁾only in polyaspartic systems ²⁾also on non-blasted steel

12

Epoxy systems, solvent-based:	Sillitin Z 86	Aktisil AM ¹⁾	Aktisil PF 777 2)	Aktifit PF 111
Dispersion	•••	•••	•••	••••
Sedimentation stability	•••	•••	••••	••••
Leveling	••••	••••	• •	•••
Sag resistance/stability	•••	•••	••••	••••
Bright coatings/color neutrality	• •	• •	• •	••••
Hardness (König pendulum)	••	•••	••••	••••
Adhesion	•••	••••1)	••••2)	••••
Corrosion protection	•••	••••1)	••••2)	••••
Chemical resistance	•••	••••	••••	••••

¹¹) optimum corrosion protection and adhesion on non-blasted steel even by reduced zinc phosphate concentration with the addition of amino silane

15

Aktifit PF 11	Aktifit PF 11
••••	••••
••••	••••
••••	••••
••••	••••
•••	••••
•••	••••
•••	••••
L	

Water-based direct-to-metal (DTM) single-layer coatings on hydrophobic acrylate dispersion base (Alberdingk), with corrosion inhibitor:	Sillitin Z 89	Aktifit Q ¹⁾
Cost optimization	••••	••
Adhesion	••••	••••
Bright coatings/color neutrality	•••	••••
Corrosion protection	•••	••••

¹⁾optimal barrier properties, as it is hydrophobic

²⁾ good corrosion protection and adhesion on non-blasted steel even by reduced zinc phosphate concentration with the addition of amino silane

Corrosion protection coatings

Direct-to-metal (DTM) single-layer coating, white based on acrylic dispersion (Covestro), without anti-corrosion pigment or inhibitor:

Gloss after partial replacement of titanium dioxide and without anti-corrosion pigment	••••
Adhesion	••••
Wet and dry adhesion, salt spray test, and humidity test	••••
Corrosion protection, salt spray test, and humidity test	••••

¹⁾ optimum barrier properties, due to hydrophobicity

Water-based, black direct-to- metal (DTM) one-coat acrylic dispersion-based coatings:	Aktisil AM
Rheological storage stable filler pastes	••••
Sedimentation stability	••••
Adhesion	••••
Corrosion protection	••••

Specially for epoxy, water-based, primer grey, e.g., for trains of the Deutsche Bahn AG:	Sillitin V 85	Aktisil AM
Homogeneity during storage	•••	••••
Sedimentation stability	••••	••••
Rheology/shear thinning	• •	••••
Adhesion	••••	••••
Flexibility/Erichsen cupping	••••	•••
Corrosion protection	••••	••••

TP 20220601)

Water-based epoxy system, clear coat without corrosion protection pigments:	Sillitin Z 89	Silfit Z 91	Aktisil AM	TP 2008037
Bright coatings/color neutrality	•••	••••	••	•••
Reduction/avoiding of milky-white blushing after humidity test	••	••••	••	••
Corrosion protection salt spray test, reduction of delamination at the scribe	•••	•••	••••	••••

Topcoat, Polyurethane, high solid, white

Advantages:

- good rheological properties
- good chemical resistance
- very low sedimentation
- improved hiding power or partial replacement of titanium dioxide
- retention of good weathering resistance

Aktifit PF 111

Rheological balance, good leveling, and sedimentation stability

Powder coatings

Advantages:

- excellent dispersion properties
- low abrasivity
- good edge covering
- good corrosion protection, especially low delamination and rust creep
- scratch resistance
- abrasion resistance
- flexibility (Erichsen cupping, impact)
- good chemical resistance, especially against hot water
- improved hiding power or partial replacement of titanium dioxide

Epoxy (FBE):	Sillitin N 75	Sillitin Z 86	Sillitin Z 89	puriss variants	Aktisil AM
Bright coatings/ color neutrality	•	••	•••	dependin on the product	g ••
Abrasivity	•••	• •	••	•	••
Hot water resistance	•••	•••	•••	•••	••••

Polyester/HAA (Primid):	Silfit Z 91	Sillitin V 88	Aktifit PF 115
Gloss	•••	•	••••
Gloss haze/haze	•••	••••	•
Flexibility/direct impact	••••	••••	••••
Flexibility/reverse impact	••••	•••	••••
Stain resistance/water spot resistance	••••	••••	••••
Corrosion protection salt spray test, reduction of delamination at the scribe	••••	••••	••••
Weathering resistance	•••	•••	•••

Polyester/TGIC and Hybrid (Epoxy-Polyester):	Silfit Z 91
Titanium dioxide extender	••••
Increase in productivity	••••
Scratch resistance	•••
Leveling	•••
Corrosion protection, reduction of blistering and delamination at the scribe 1)	••••
Weathering resistance ¹⁾	•••

¹⁾ in polyester/TGIC

Gloss ••• Matting			Aktifit
Matting	• •	••	•••
	•••	•••	• •
Abrasion resistance	•••	••••	••••
Color neutrality ••••	•••	•••	••••

Wood and film coatings

UV/excimer curing coatings and clear coatings for wood and films

Advantages:

- adjustable rheology through choice of product
- low sedimentation
- no hard sediment
- low abrasivity
- scratch resistance
- · abrasion resistance
- very good transparency
- matting effect
- no effect on UV-curing

	Sillitin V 88	Sillitin Z 89	Sillitin Z 89 puriss	Aktisil VM 56/89	Aktisil MAM	Silfit Z 91	Aktifit VM	Aktifit Q
Dispersion	•••	• •	••••	• •	•••	••••	••••	••••
Viscosity	•	•••	•••	•••	•	• •	•	•
Sedimentation stability	•	••••	••••	••••	•	• •	• •	• •
Abrasion resistance	•••	••	••	•••	••••	•••	••••	••••
Matting	••••	••	••	••	••••	••	• •	• •
Gloss	•	•••	•••	•••	•	•••	•••	•••
Color neutrality	••••	•••	•••	•••	••••	••••	••••	••••
Transparency	••••	•••	•••	•••	••••	••	• •	• •
Hiding power ¹⁾							••••	••••
Suitable for excimer	••••				••••			••••
Excimer, Martindale test, homogeneity of matting	••••				••••			••••

¹⁾ improvement of hiding power in white-pigmented topcoats and at the same time good curing/UV curing

Dispersion-based clear wood coatings

Advantages:

- easy dosing and incorporation, hardly any dust formation
- excellent dispersion properties
- little to no foam formation
- better sanding after shorter drying time
- improved abrasion resistance
- anti-blocking effect
- good transparency
- · excellent matting effect
- resistance to water and stains
- good appearance on dark woods, wood grain enhancement

	Sillitin V 88	Sillitin Z 89	Aktisil MAM	Silfit Z 91 ¹⁾	Aktifit Q ¹⁾	Gloxil matt SL ²⁾
Dispersion	••••	•••	••	••••	••	
Sedimentation stability	••	••••	• •	•••	•••	••••
Anti blocking	••••	•••	••••	•••	•••	••••
Sanding	••••	••••	•••	•••	•••	• •
Abrasion resistance	•••	•••	••••	•••	••••	•••
Matting	••••	•••	••••	•••	•••	••••
Gloss	•	•••	•	• •	• •	•
Color neutrality	•••	•••	•••	••••	••••	••••
Transparency	••••	••••	••••	•••	•••	••••
Water/stain resistance	••	• •	••••	• •	••••	••••
Metal marking resistance	•	••	••	••	••	••••

¹⁾ not glazed white, for pigmented paints

²⁾ The liquid slurry offers dust-free processing and a reduction in mixing time and thus production time. There is also the possibility of subsequent matting.

Wood and film coatings

Exterior top coats and breathable primers

Advantages:

- excellent dispersion properties
- balanced rheology
- · very low sedimentation
- fast drying
- water vapor permeability

Dispersion ¹⁾	•••	••••
	Sillitin Z 89	Sillitin Z 89 puriss

1) especially in solvent-borne systems

Plastic topcoats

Advantages:

- low sedimentation
- good/improved hiding power/opacity
- partial titanium dioxide replacement
- excellent dispersion properties
- · very high brightness and color neutrality
- potential for saving formulation costs
- · high gloss retention, very low haze

	Silfi	Akt
Dispersion	•••	•••
Bright coatings/color neutrality	••••	••••
Reduction of sagging/stability ¹⁾	•••	••••
Titanium dioxide extender	••••	••••

t Z 91

¹⁾ possible replacement of rheological additive, advantage of very low haze

¹⁾ possible replacement of rheological additives

Ink transfer and edge definition

Screen printing inks

Advantages:

- excellent dispersion properties
- good rheological properties, improved ink transfer
- very good edge definition with high resolution printing

22

Soft-feel coatings

Advantages:

- low sedimentation
- excellent matting
- extended retention of the soft-feel effect
- good chemical resistance
- good abrasion resistance
- good transparency
- · good adhesion

	Sillitin V 85	Sillitin V 88	Sillitin Z 86	Sillitin Z 89	Aktifit PF 115
Matting	••••	••••	• •	••	•
Bright coatings/color neutrality	• •	•••	• •	•••	••••
Sedimentation stability	•	•	•••	•••	••
Surface roughness	•••	•••	•	•	•
Transparency	•••	•••	• • •	•••	••••
Adhesion	• •	• •	• •	• •	•••
Resistances (e.g. suntan cream)	••	••	• •	••	•••
Partial replacement of matting agent	••	• •	•	•	•••

Plastic primers

Advantages:

- very low sedimentation
- balanced rheology with only minimal sagging and good leveling
- good adhesion

	Sillitin Z 86	Aktisil PF 7771)	Aktifit PF 111 ¹⁾
Dispersion	•••	•••	••••
Bright coatings/color neutrality	•••	•••	••••
Reduction of sagging/stability ¹⁾	••	••••	••••
Adhesion to plastics	•••	••••	••••
Leveling	••••	••	•••

¹⁾ possible replacement of rheological additives

Solder resist inks

Advantages:

- particle size spectrum meeting requirements
- no disturbing electrolytes
- excellent dispersion properties
- low sedimentation
- balanced rheology
- good edge covering
- no effect on UV-curing
- superior chemical

chemical resistance	Sillitin Z 8	Sillitin P 8	Sillitin P 8	Aktisil AM	Aktisil MA	
Dispersion	••••	••	••••	••	•••	
Viscosity at low shear rates	•••	••••	••••	• •	•••	
Especially suitable for thin layers	•••	•••	••••	•••	• •	
Adhesion	•••	•••	•••	••••	•••	
Low-viscosity UV-curing systems	•••	•••	•••	•••	••••	

low • high •••• optimum

×

Paints and varnishes

Construction coatings and decorative paints

Road marking paints

Advantages:

- very low sedimentation
- fast drying
- improved hiding power (opacity) or partial replacement of titanium dioxide
- abrasion resistance
- night visibility/improved anchoring of reflecting glass beads
- improved early rain resistance

	Sillitin V 88	Sillitin Z 89	Silfit Z 91	Sillitin N 75 ¹⁾	TP 2023032 ²⁾
Viscosity	• •	•••	0.0		
Bright coatings/color neutrality	•••	•••	••••		
Titanium dioxide extender	••	•••	••••		
Yellow marking paints ¹⁾				••••	••••

¹⁾Sillitin N 75 is well suited as a filler in yellow marking paints.

Dispersion coatings for concrete for roofs and balconies

Advantages:

- balanced rheology
- fast drying, even with thick layers and humid climate
- abrasion resistance

	Sillitin Z 89	Silfit Z 91	Aktisii MAM	Aktifit Q ¹⁾
Viscosity at low shear rates	•••	• •	•	•
Sedimentation stability	••••	• •	•	• •
Matting	••	• •	••••	• •
Bright coatings/color neutrality	•••	••••	•••	••••
Water absorption	•••	• •	•	•
Abrasion resistance	••	• •	••••	••••

¹⁾ hydrophobic

²⁾TP 2023032 is suitable as an extender for yellow pigments.

Construction coatings and decorative paints

Interior dispersion paints

Advantages:

- excellent dispersion properties
- matting
- no sedimentation
- improved hiding power or partial replacement of TiO₂/pigment
- good wet-scrub resistance

	Sillitin V 88	Sillitin Z 89	Silfit Z 91	Aktisil MAM	Sillitin N 75 ¹⁾	TP 2023032²)
Matting	••••	• •	••	••••		
Bright coatings/color neutrality	•••	•••	••••	•••		
Wet-scrub resistance	•••	••	••	••••		
Stain resistance	• •	••	••	••••		
Titanium dioxide extender	• •	•••	••••	• •		
Water absorption	•••	•••	•••	•		
Colors in yellow to brown, earth tones 1), 2)					••••	•••

¹⁾Sillitin N 75 is well suited as a filler in yellow marking paints.

Interior dispersion paints with special properties

Advantages:

- cleanability
- resistance against cleaning agents and disinfectants
- wet-scrub resistance
- good burnish resistance
- also suitable for transparent coatings

Aktisil MAM	Aktifit Q ¹⁾	Gloxil matt SL
••••	••	••••
•	•••	•
•••	••••	••••
••••	•••	••••
••••	•••	•••
••••	•••	••••
	••••	••••

¹⁾ hydrophob

²⁾TP 2023032 is suitable as an extender for yellow pigments.

²⁾The liquid slurry offers a dust-free option for subsequent matting and specifically for reducing shrinkage cracks at high layer thicknesses in corners and on edges.

Construction coatings and decorative paints

Façade paints

Advantages:

- excellent dispersion properties
- very low sedimentation
- good abrasion resistance
- matting
- improved hiding power (opacity) or partial replacement of titanium dioxide
- water vapor permeability

	Sillitin V 88	Sillitin Z 89	Silfit Z 91	Aktisil MAM	Sillitin N 75 ¹⁾	TP 2023032²)
Matting	••••	• •	••	••••		
Bright coatings/color neutrality	•••	•••	••••	•••		
Titanium dioxide extender	• •	•••	••••	••		
Water absorption	•••	•••	•••	•		
Colors in yellow to brown, earth tones 1), 2)					••••	•••

¹⁾Sillitin N 75 is well suited as a filler in yellow marking paints.

28

Silicate and dispersion silicate paints

Advantages:

- excellent dispersion properties
- high rheological stability
- very low or no sedimentation
- good abrasion resistance
- water vapor permeability
- silicifiable with alkali silicate solution
- improved hiding power (opacity) or partial replacement of titanium dioxide

	Sillitin V 88	Sillitin Z 89	Silfit Z 91
Viscosity	•	•••	•
Rheological stability	••••	•••	•••
Bright coatings/color neutrality	•••	•••	••••
Titanium dioxide extender	• •	•••	••••
Water absorption	•	•••	•

²⁾TP 2023032 is suitable as an extender for yellow pigments.

Properties of Neuburg Siliceous Earth	Advantages for users
good and rapid incorporation, excellent dispersion properties (especially puriss products)	> better processability and faster production
very low sedimentation, no hard sediment	> improved product handling
good pigment dispersion (spacer effect)	> improved dispersion and pigment distribution possible, potential for cost reduction
good rheological properties (shear thinning, thixotropic)	> adjustable rheology, individually according to product selection
adjustable matting effect or gloss level	> depending on product selection, gloss level or matting can be chosen individually
very fast drying	> better and faster processability, reduction of working time on site
good mechanical properties	> excellent tensile strength, lap shear strength, and tear resistance
good chemical resistance	> high resistance to aggressive substances
good corrosion protection, weather stability	> extended resistance to environmental influences
surface treatment possible	> good interaction into the polymer matrix, adjustable rheology control
high purity	> also suitable for food contact including drinking water
very low CO ₂ -footprint	> significant reduction of the carbon footprint of reactive resins, adhesives and sealants

Properties of Calcined Neuburg Siliceous Earth	Advantages for users
low moisture content,	> suitable for moisture-curing systems, good stability
very high brightness and color neutrality	> enables transparent or white products without yellow-tint, reduces pigment content
excellent dispersion properties (like puriss products)	> simple and fast production possible
reduced influence on certain curing reactions	> fast reaction start, quick and complete reaction, less catalyst required
reduced interaction between filler particles	> lower viscosity

Aktisil | Aktifit

These special fillers are based on Neuburg Siliceous Earth, the surface of which is treated with additives.

The Aktisil and Aktifit products have largely functional groups that enable covalent bonds or intensive interaction with the polymer matrix and thereby achieve control and improvement of the properties.

Product name	Application
Aktisil AM	2K PU applications with higher requirements for mechanical properties, abrasion resistance and chemical resistance, for example for roof and flooring membranes, concrete pipe seals, pipeline coating, sealing membranes, mortar and grouting with improved chemical resistance, adhesive tapes (in adhesive layer), plastisols
Aktisil MAM	radically curing reactive resins and UV-curing adhesives
Aktisil PF 216	polysulfide sealants, sealing compounds, adhesive tapes (in adhesive layer)
Aktisil PF 777	products requiring a hydrophobic filler to minimize water absorption or if a higher rheological activity of the filler is required; non-sagging 2K PU applications with improved water resistance, for example for roof and flooring membranes, pipe seals, 2K PU adhesives, mortar and grouting with improved water resistance, adhesives for wind turbine rotor blades, non-sagging 2K epoxy systems, MS and STP systems with improved water and acid resistance, plastisols
Aktisil VM 56	radically curing reactive resins and UV-curing adhesives, adhesive tapes (in adhesive layer), plastisols
Aktisil VM 56/89	as VM 56 but for higher color neutrality requirements and slightly improved dispersion performance

Following properties can be significantly influenced: wetting, viscosity, yield point, reaction time/catalyst requirement, tensile strength, tear resistance, compression set, hardness, adhesive strength, shear adhesion at high temperatures (SAFT), abrasion resistance, water absorption, water resistance, transparency, corrosion protection, chemical resistance.

Produ	ct name	Application
Ø A	Aktifit AM	similar to Aktisil AM, but with highest color neutrality and improved dispersion performance, often with lower viscosity; moisture-curing STP adhesives for parquet, windscreens and general industrial applications, coatings for pipelines with drinking water contact, 2K PU roller coverings, 2K PU sealants, seals and sealing membranes
A	Aktifit PF 111	similar to PF 777, but with highest color neutrality and improved dispersion performance, very low moisture content with no increase in humid climatic conditions; gel coats with improved thixotropy, 1K and 2K PU applications, adhesive tapes (in adhesive layer), non-sagging moisture-curing STP adhesives and sealants for parquet, windscreens and general industrial applications with excellent hot water resistance and adhesive strength on aluminum, plastisols
A	Aktifit PF 115	similar to AKTIFIT AM, but hydrophobic, very low moisture content, 2K PU thick film coatings, e. g. pipelines, adhesives based on STP-U and 1K PU
Ø A	Aktifit Q	similar to VM 56 and VM 56/89, but with highest color neutrality and improved dispersion properties, hydrophobic, very low moisture content without increase under humid climatic conditions, often lower viscosity; generally products that require an extremely hydrophobic filler for minimizing water absorption without higher rheological activity, humidity-sensitive systems that are manufactured without pre-drying of the filler, e.g. MS and STP systems, 1K and 2K PU applications, gel coats with improved water resistance, adhesive tapes (in adhesive layer), moisture-curing STP adhesives, 3D printing SLA
()	Aktifit VM	similar to VM 56 and VM 56/89, but with highest color neutrality and improved dispersion performance, hydrophobic, very low moisture content with no increase in humid climatic conditions, often with lower viscosity;

generally products requiring an extreme hydrophobic filler to minimize water absorption without higher rheological activity, systems sensitive to moisture which are produced without pre-drying the filler, e. g. MS and STP systems, 1K and 2K PU applications, gel coats with improved water resistance, adhesive tapes (in adhesive layer), moisture-curing STP adhesives for parquet, car windscreens and general industrial applications

with excellent hot water resistance and adhesive strength on aluminum

Reactive resins, adhesives and sealants

Reactive resins

Gel coats

Advantages:

- excellent dispersion properties
- improves pigment dispersion (spacer effect)
- low sedimentation
- balanced rheology (good deaeration/ non-sagging)
- good weathering resistance
- good chemical resistance
- good water resistance
- · good flexibility
- abrasion resistance

	Sillitin Z 89 puriss	Silfit Z 91	Aktifit VM ¹⁾	Aktifit Q ²⁾	Aktifit PF 1111)
Bright coatings/color neutrality	•••	••••	••••	••••	••••
Fast reaction start	••	••••	••••	••••	••••
Water resistance	•••	•••	••••	••••	••••
Rheological activity (higher viscosity at low shear rates, yield point)	•••	••	••	••	••••

¹⁾ hydrophobic

Acrylic sinks

Advantages:

- excellent dispersion properties
- · low increase in viscosity
- high brightness
- high color neutrality
- improves pigment dispersion (spacer effect) and potential for partial pigment replacement
- thermal shock resistance
- scratch resistance
- abrasion resistance

	Silfit Z 91	Aktifit AM	Aktifit VM	Aktifit Q ²⁾
Mechanics	•••	••••	••••	••••
Scratch and abrasion resistance	•••	••••	••••	••••
Stain resistance	•••	••••	•••	•••

¹⁾ hydrophobic

3D-printing stereolithography (SLA), UV-curing

Advantages:

- despite fill level up to 20%:
- moderate increase in viscosity
- · undisturbed UV crosslinking
- increase in stiffness and heat distortion temperature
- largely retention of tensile strength, elongation at break and impact strength

Aktifit Q

Best combination of the mentioned properties

••••

²⁾ higher polarity and reactivity due to methacrylic groups

²⁾higher polarity and reactivity due to methacrylic groups

Reactive resins

Advantages:

- very good dispersion properties
- good transparency in sealers
- anti-settlement additive for coarse fillers
- good processing properties, also with minimized additive content:
- good leveling
- good deaeration
- good pigment stability
- appearance of crossover-area of adjacent lines
- improved mechanical properties, also with minimized additive content:
- tensile and compressive strength
- tensile modulus
- abrasion resistance
- good chemical resistance
- also suitable for food contact and drinking water applications (as per BfR and FDA regulations)

Abrasion resistance		•••
Mechanics	•••	•••
Bright coatings/color neutrality	• •	•••
Self-levelling epoxy systems, solvent free and water-based:	Sillitin Z 86	Sillitin Z 89

Transparent sealer (top coat) epoxy systems:	Sillitin Z 86 puriss	Sillitin Z 89 puriss	Silfit Z 91	Aktifit AM
Bright coatings/color neutrality	••	•••	••••	••••
Viscosity	•••	•••	••	••
Abrasion resistance	•••	•••	•••	••••

Self-leveling, polyaspartic, white:	Sillitin Z 89	Sillitin Z 89 puriss	Silfit Z 91	Aktifit AM
Dispersion	•••	••••	••••	••••
Viscosity	•••	•••	••	••
Rheological activity/thixotropy	•••	•••	• •	• •
Storage stability (sedimentation stability, homogeneity)	•••	•••	•••	•••
Brightness/color neutrality	•••	•••	••••	••••
Hiding power	••••	••••	••••	••••
Gloss	••••	••••	••••	••••
Haze	•	•	•	•
Abrasion resistance	••••	••••	••••	••••

Reactive resins, adhesives and sealants

Reactive resins

Mortar, grouting, coatings with the highest chemical resistance

Advantages:

- selectable rheology (free-flowing to non-sagging)
- easy processing
- good mechanical properties (high strength)
- good chemical resistance
- also suitable for food contact and drinking water applications
 (as per BfR and FDA regulations)

	Sillitin Z 86	Sillitin Z 86 puriss	Silfit Z 91	Aktisil PF 7771)	Aktisil AM	Aktifit AM
Dispersion	•••	••••	••••	•••	•••	••••
Bright coatings/color neutrality	• •	••	••••	• •	• •	••••
Viscosity	•••	•••	••	•••	•••	••
Rheological activity (higher viscosity at low shear rates, yield point)	••	••	••	••••	••	••
Acid resistance	•••	•••	••••	•••	•••	••••
Water resistance	•••	•••	•••	••••	•••	•••
Chemical resistance	•••	•••	•••	•••	••••	••••

¹⁾ hydrophobic

Reactive resins, adhesives and sealants

2K Polyurethane applications

Coatings, sealants, adhesives, tooling resins

Advantages:

- excellent dispersion properties
- selectable rheology (free-flowing to non-sagging)
- easy processing
- good mechanical properties:
- tensile strength
- tear resistance
- elasticity/compression set
- abrasion resistance
- good chemical resistance, especially against acids
- good water resistance
- also suitable for food contact and drinking water applications
 (as per BfR and FDA regulations)

Sports surfaces/sealers

Advantages:

- excellent dispersion properties
- easy processing
- good mechanical properties
- abrasion resistance
- transparency

	Sillitii or Z	Sillitii or Z	Silfit
Dispersion	•••	••••	••••
Viscosity	•••	•••	••
Bright and transparent/translucent coatings/color neutrality	••/•••	••/•••	••••
Crosslinking reactivity	•••	•••	••••

Sillitin Z 86 or Z 89	Sillitin Z 86 puriss or Z 89 puriss	Sillitin P 87 puriss	Aktisil AM	Aktisil PF 7771)	Siffit Z 91		Aktifit AM	Aktifit VM ¹⁾	Aktifit Q ²⁾	Aktifit PF 111 ¹⁾	Aktifit PF 115 ¹⁾
••/•••	••/•••	••	••	• •	••••		••••	••••	••••	••••	••••
•••	••••	••••	•••	•••	••••		••••	••••	••••	••••	••••
••	••	•••	• •	• •	•		•	•	•	•	•
••	• •	••	• •	••••	•		٠	٠	•	••••	•••
••/•••	••/•••	• •	• • •	•••	••••		••••	••••	••••	••••	••••
• •	•••	•••	••••	• •	• • •		••••	•••	•••	•••	••••
•••	•••	••••	• • •	•••	• •		• •	• •	• •	• •	• •
•••	•••	•••	•	•••	• •		•	• •	• •	• •	•
•••	•••	•••	••••	••	•••		••••	•••	•••	••	•••
•••	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••
•••	•••	•••	•••	••••	•••		•••	••••	••••	••••	•••
	. Sillitin Z	Sillitin Z 86	Sillitin Z 86 Or Z 89 Or Z 89	Sillitin Z 86 or Z 89 or Z 80 or Z 80 or Z 89 or Z 80	Sillitin Z 86 Or Z 89 Or Z 8	Sillitin Z 86 Sillitin Z 86 Sillitin Z 89 Or	Sillitin Z 86 or Z 89 or Z 89 puritin Z 86 or Z 89 puritin Z 86 or Z 89 puritin Z 86 or Z 89 puritin D 87 or Z 89	Sillitin Z 86 Sillitin Z 86 Sillitin D 87 Sillitin P 87 Aktisii PF 7 Aktisii PF 7 Aktifit AM	Sillitin Z 86 Sillitin Z 86 Sillitin D 87 Sillitin D 87 Sillitin D 87 Sillitin D 87 Aktisil AM Aktisil AM	Silitin Z 86 Silitin Z 86 Silitin P 87 Aktisil AM Aktifit AM Aktifit AM Aktifit AM Aktifit Q ²)	Silitin Z 86 Silitin Z 86 Silitin B 87 Aktisil AM Aktisil AM Aktifit AM Aktifit VM ¹⁾ Aktifit VM ¹⁾ Aktifit Q ²⁾

¹⁾ hydrophobic, low moisture absorption in humid climate

²⁾increased polarity and reactivity due to methacrylic groups

2K Polyurethane applications

Pipeline coating

Advantages:

- excellent dispersion properties
- easy processing
- good mechanical properties
- abrasion resistance
- good corrosion protection properties
- good chemical resistance, especially against acids
- good water resistance
- also suitable for food contact and drinking water applications (as per BfR and FDA regulations)

galatoney	Sillitin Z 86 puris	Silfit Z 91	Aktifit AM	Aktifit PF 115 ¹⁾
Viscosity	••	• •	• •	• •
Rheological activity (higher viscosity at low shear rates)	•	• •	• •	••••
Sedimentation stability	••••	•••	•••	••••
Bright coatings/color neutrality	••	••••	••••	••••
Tensile strength	••••	••••	••••	••••
Elongation at break	•••	••••	••••	••••
Impact strength	•••	•••	•••	••••
Abrasion resistance	•••	•••	••••	•••
Corrosion protection	•••	• • •	••••	••••

¹⁾ hydrophobic, therefore, low moisture absorption in humid climate

 selectable rheology (free-flowing to non-sagging)

Sealants and membranes

- good mechanical properties (high strength)
- good chemical resistance
- also suitable for food contact and drinking water applications (as per BfR and FDA regulations)

	Sillitin Z 86	Sillitin Z 86 puriss	Aktisil AM	Aktisil PF 777 ¹⁾	Silfit Z 91	Aktifit AM	Aktifit PF 115 ¹⁾	Aktifit VM ¹⁾	Aktifit PF 111 ¹⁾
Dispersion	•••	••••	•••	•••	••••	••••	••••	••••	••••
Viscosity	•••	•••	•••	•••	••	••	••	••	••
Rheological activity (higher Viscosity at low shear rates)	••	••	• •	••••	••	••	•••	••	••••
Crosslinking reactivity	••	• •	••••	•••	•••	••••	•••	•••	•••
Bright coatings/ color neutrality	••	• •	••	••	••••	••••	••••	••••	••••
Tensile strength	•••	•••	••••	•••	•••	••••	••••	•••	•••
Abrasion resistance	•••	•••	••••	•••	•••	••••	••••	•••	•••
Adhesion	•••	•••	•••	•••	•••	•••	•••	•••	•••
Chemical resistance	•••	•••	•••	•••	•••	•••	•••	•••	•••
Water resistance	•••	•••	•••	••••	•••	•••	••••	••••	••••

¹⁾ hydrophobic, therefore, low moisture absorption in humid climate

2K Polyurethane applications

Viscosity

Bright coatings/color neutrality

Roller coverings

Advantages:

- excellent dispersion properties
- balanced profile of properties for strength, abrasion resistance, low swelling, heat build-up and durability

Sillitin Z 89 puriss	Silfit Z 91	Aktifit AM	Aktifit PF 115 ¹⁾	
•••	••	••	•••	
•••	••••	••••	••••	
•••	•••	••••	••••	
•••	•••	••••	••••	

¹⁾ hydrophobic, therefore, low moisture absorption in humid climate

Moldmaking compounds and molds for precast concrete components

Advantages:

· good mechanical properties: tensile strength, tear resistance and abrasion resistance

	S	S
Dispersion	•••	•••
Tensile strength	•••	•••
Elongation at break	•••	•••

Coatings also based on PVC

Advantages:

- · good adhesive strength
- mechanical resistance (abrasion, stone chipping)
- partial replacement of rheological

Moisture resistance 1) hydrophobic

Stone chip impact resistance

...

...

••••

...

...

••••

••••

...

...

••••

•••

••••

Crosslinking reactivity Abrasion resistance Swelling resistance Reduction of dynamic heat build-up

²⁾ partially reduced gelation temperature

Adhesives

Polychloroprene adhesives

Advantages:

- excellent dispersion properties
- selectable rheology (free-flowing to non-sagging)
- low sedimentation
- improved strength

• • •	••••	•••
Sillitin Z 86 puriss	Aktisil PF 7771)	Aktifit PF 111 1)

Rheological activity	•••	••••	••••
Dispersion	••••	•••	••••
Color neutrality	••	••	••••

¹⁾ hydrophobic

Paper adhesives (dispersion-based)

Advantages:

- excellent dispersion properties
- low sedimentation
- good bond strength

Bright coatings/color neutrality

Adhesives for wind turbine rotor blades

Advantages:

- excellent dispersion properties
- low sedimentation
- rheology/thixotropy
- high strength and elongation at break

	Sillitin Z 86 oder Z 89	Sillitin Z 86 oder Z 89 puriss	Aktisil PF 777 ¹⁾	Silfit Z 91	Aktifit AM	Aktifit PF 111 ¹⁾	Aktifit PF 115 ¹⁾
Dispersion	•••	••••	•••	••••	••••	••••	••••
Rheological activity	•••	•••	••••	•••	•••	••••	•••
Color neutrality	••/•••	••/•••	• •	••••	••••	••••	••••
Stability under moisture exposure	•••	•••	••••	•••	••••	••••	••••
Tensile strength (free film/sample ISO 527)	•••	•••	•••	•••	•••	•••	••••
Elongation at break (free film/sample ISO 527)	•••	•••	•••	•••	•••	•••	••••
Impact strength (free film/sample ISO 179)	•••	•••	•••	••••	•••	•••	••••

¹⁾ hydrophobic

Reactive resins, adhesives and sealants

low • high •••• optimum

•••

Adhesives

Advantages:

- rheology/thixotropy
- adjustable rheology through product selection
- · excellent dispersing behavior
- improved adhesive properties
- high peel resistance (system-dependent)
- improved tensile shear strength

	Sillitin V 85	Sillitin Z 86 puriss	Aktisil PF 7771)	Aktisil Q
Dispersion	•••	••••	•••	•••
Viscosity at low shear rates	••	•••	••••	•
Rheological activity/thixotropy	••	•••	••••	•
Color neutrality	••	••	• •	•••
Storage stability (sedimentation stability and rheological stability)	••••	••••	••••	••••
Lap shear strength ²⁾	••*/•••**	•*/•••*	••*/••••**	••*/-
Peel resistance (T-Peel) ²⁾	•••*/••**	•••*/•**	••••*/•**	••••*/-
Potential for saving costs	••••	•••	• •	• •

¹⁾ hydrophobic

Moisture-curing adhesives based on STP and PUR, e.g. for parquet, car windscreens, industrial applications

Advantages:

- selectable rheology (free-flowing to non-sagging)
- excellent strength properties, up to 2-fold or 3-fold of calcium carbonate (tensile strength and lap shear strength), mostly without reducing the ultimate elongation
- good water resistance and chemical resistance

STP-E and STP-U adhesives:	Sillitin V 85	Sillitin Z 86 puriss	Slifit Z 91	Aktifit AM ²⁾	Aktifit VM ¹⁾	Aktifit PF 111 ¹⁾	Aktifit PF 115 ¹⁾
Viscosity	••	•••	•	•	•	•	•
Rheological activity	••	•••	••	••	•••	••••	•••
Tensile strength/lap shear strength	••	••••	••••	••••	••••	•••	••••
Color neutrality	• •	• •	••••	••••	••••	••••	••••
Hot water resistance	••	• •	••	••	••••	••••	••••
Adhesive strength on aluminum	••	• •	•••	•••	••••	••••	••••
Tear resistance in STP-U	• •	• •	• •	• •	• •	••••	• •
Lap shear strength in STP-U	••	•••	•••	•••	•••	•••	••••

¹⁾ hydrophobic, low moisture without increase in humid climate conditions

²⁾ enables lower amino silane concentration in the formulation

1K PUR adhesives:	Aktifit VM ¹⁾	Aktifit PF 111 ¹⁾	Aktifit PF 115 ¹⁾
Rheological activity	•••	••••	••••
Tensile strength	••••	••••	••••
Lap shear strength	••••	••••	••••

¹⁾ hydrophobic, low moisture without increase under humid climatic conditions

48 low ◆ high ◆◆◆◆ optimum

²⁾ system-dependent

^{*}toughness modifier epoxy-silicone block copolymer

^{**}toughness modifier reactive liquid rubber (ATBN)

Adhesives

Adhesives for electronic components

Advantages:

· thermal shock resistance

Dispersion	•••	••••
	Sillitin Z 86	Sillitin Z 86 puris

Mounting adhesives (polyester/acrylic based)

Advantages:

- excellent dispersion properties
- selectable rheology (free-flowing to non-sagging)
- low sedimentation
- · improved strength

• Improved Strength	Sillitin V 85	Aktisil VM 56	Aktifit VM ¹⁾	Aktifit Q ²⁾	Aktifit PF 111 ¹⁾
Dispersion	•••	•••	••••	••••	••••
Rheological activity	••	•••	•••	•••	••••
Strength	••	••••	••••	••••	••••
Covalent bond	none	••••	••••	••••	•••
Bright coatings/color neutrality	• •	• •	••••	••••	••••

¹⁾ hydrophobi

50

Adhesive tapes PSA (adhesive layer)

Advantages:

- improved bond strength through increased cohesion
- reduction/elimination of adhesive layer residues on the substrate after removing the adhesive tape
- improvement of the shear adhesion at high temperatures (SAFT)

layer		1	-	
movin	ig	400		
n at	· •	1		
Silitin 2 86	Aktisil AM/Aktisil VM 56/ Aktisil PF 216	Aktifit AM / Aktifit VM / Aktifit Q	Aktifit PF 111	
•	•••	•	•	_
•	•••	•••	••••	
	• •	••••	••••	

Viscosity	•••	•••	•	•
Rheological activity	•••	•••	•••	••••
Bright coatings/color neutrality	••	••	••••	••••
Shear adhesion and SAFT	•••	••••	••••	••••

Laminating adhesives (films on chipboards, dispersion-based)

Advantages:

- excellent dispersion properties
- low sedimentation
- good resistance and appearance of laminating films under exposure to warm and humid conditions

Sillitin Z 89

Best combination of the mentioned advantages

ned

²⁾ higher polarity and reactivity due to methacrylic groups