

Neuburg Siliceous Earth in toughened 2K-epoxy-structural-adhesive

Author: Petra Zehnder

Contents

- Introduction
- System 1: Component A with epoxy-silicone block coplymer
 - Experimental
 - Results
 - Summary
- System 2: Component B with reactive liquid rubber (ATBN)
 - Experimental
 - Results
 - Summary
- Appendix

Status Quo

- Adhesive bonding is already replacing conventional mechanical joining techniques in many technical applications.
- Structural adhesives are becoming increasingly important, particularly in vehicle and construction engineering.
- 1- or 2-component epoxy-resin based adhesives offer high strength and good chemical and temperature resistance.
- Toughness modifiers are often added to improve flexibility and thus increase shear and peel strength.
- Suitable fillers can also help to optimize the formulation.

System 1

Component A with epoxy-silicone block-copolymer

System 2

Component B with reactive liquid rubber (ATBN)

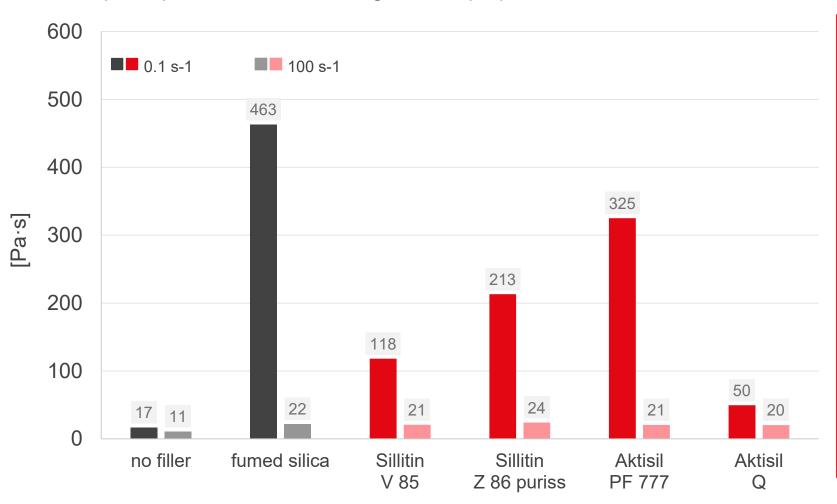
Formulation

Component A		Par	ts by weight [p	bw]
Epikote Resin 828LVEL	Epoxy-resin based on bisphenol A	80	80	80
Albiflex 297	Epoxy-silicone block-copolymer	20	20	20
Dynasylan 9116	Alkyl silane, adhesion promoter	3	3	3
Fumed silica	Filler		5	
Neuburg Siliceous Earth	Filler			50
Total		103	108	153
Component B				
Ancamine 2719	Aliphatic amine (mannich base)	34.37	34.37	34.37
Total A + B		137.37	142.37	187.37

Preparation **i**

Filler characteristics

	Partic	le size	Col	lor CIEI	_ab	Oil	Density	Specific	Surface treatment
						absorption		surface area BET	
	d ₅₀ [μm]	d ₉₇ [μm]	L* [-]	a* [-]	b* [-]	[g/100g]	[g/cm³]	[m²/g]	
Fumed silica	_	-	-	-	_	-	2.0	80-120	ja
Sillitin V 85	4.5	18	93.3	1.0	9.2	45	2.6	10	-
Sillitin Z 86 puriss	1.9	9	93.9	1.0	9.7	55	2.6	12	_
Aktisil PF 777	2.2	10	93.6	1.2	10.0	35	2.6	9	alkyl functionalized
Aktisil Q	4.0	18	94.7	0.3	4.1	43	2.6	6	methacryl functionalized

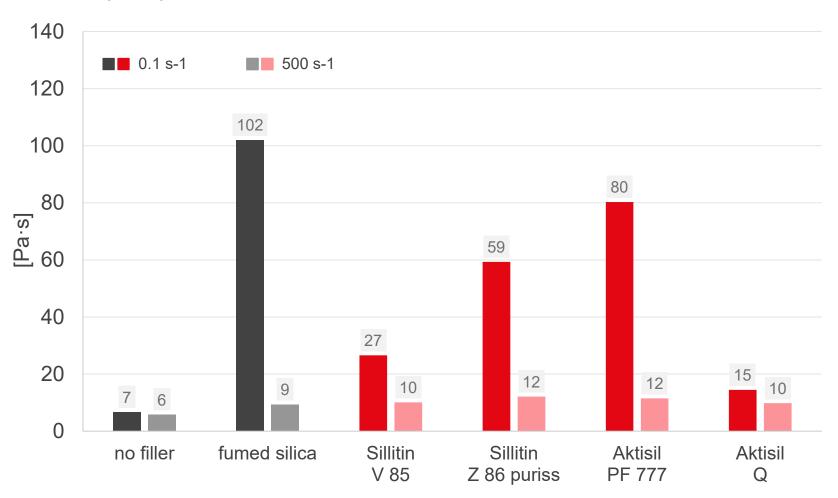

Structure of Neuburg Siliceous Earth 1

Viscosity Component A

MCR 300, platte/platte PP25, measuring 7d after preparation

The addition of the filler increases the viscosity noticeably, especially in the low shear range.

Despite the dosage of 50 pbw, Aktisil Q remains at a very low level, whereas Aktisil PF 777 gives the highest viscosity.

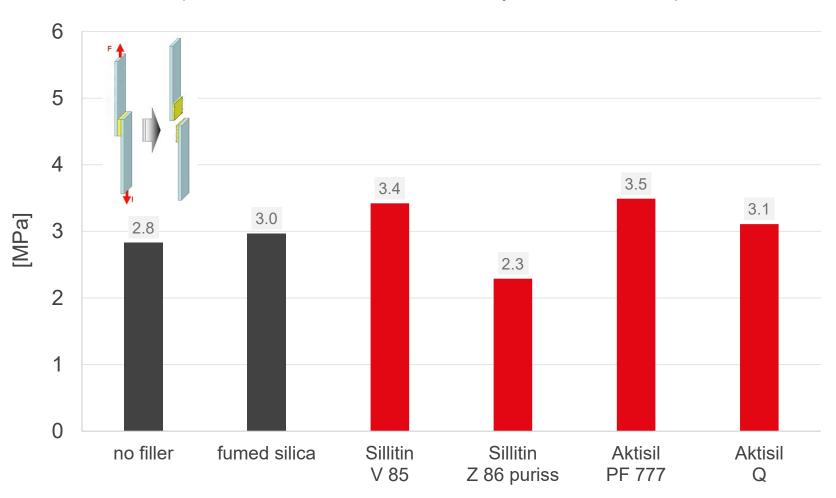

Storage stability

Sedimentation	storage at room temperature for up to 8 weeks: no sediment	
Rheology	storage at room temperature for up to 12 weeks: no change in rheology	

Viscosity Component A+B

MCR 300, plate/plate PP25

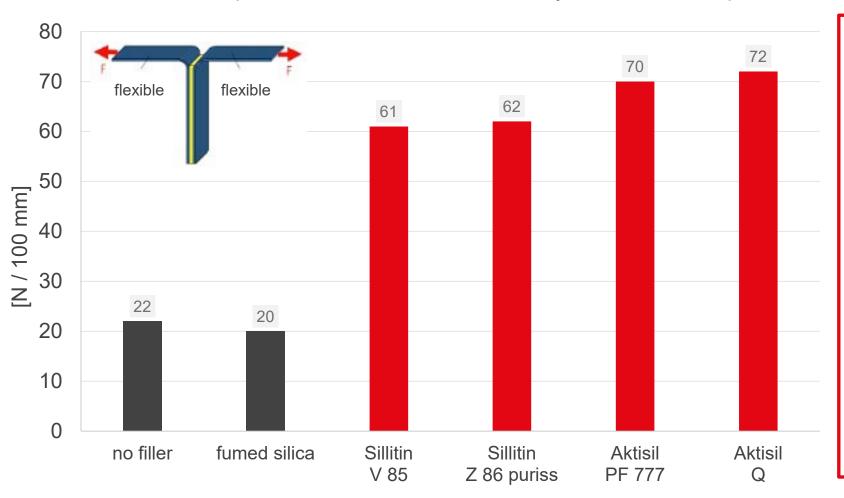
After adding the low-viscosity hardener:


Aktisil Q still shows the lowest viscosity, whereas the other fillers tested result in an ascending ranking of low shear viscosity or yield point.

Aktisil PF 777 marks the highest value after silica and thus the most pronounced shear thinning and thixotropy.

Lap Shear Strength

DIN EN 1465, Cr3 passivated aluminum, adhesive layer thickness 100 µm


Neuburg Siliceous Earth results in a similar to slightly increased lap shear strength compared to the unfilled formulation or the competitor silica.

T-Peel Test

DIN EN ISO 11339, Cr3 passivated aluminum, adhesive layer thickness 100 µm

With
Neuburg Siliceous Earth,
the peel resistance can be
more than tripled.

Rating

	Fumed silica	Sillitin V85	Sillitin Z 86 puriss	Aktisil PF 777	Aktisil Q
Viscosity	个个	个 个	^	↑↑	0/↑
Lap shear strength	0	0 / +	0	0 / +	0
Peel resistance	0	++	++	++	++
Cost aspect		+++	+++	++	++
Note		standard product	easy to disperse	rheologically active	low viscosity

Benefits of Neuburg Siliceous Earth vs. unfilled formulation:

comparable or higher lap shear strength

significantly higher peel resistance

positive cost aspect through the use of filler

System 1

Component A with epoxy-silicone block-copolymer

System 2

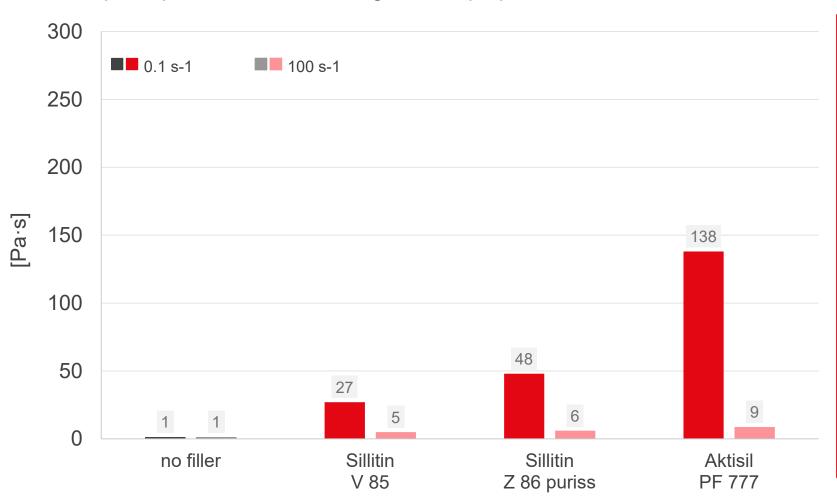
Component B with reactive liquid rubber (ATBN)

Formulation

Component A		Parts by w	eight [pbw]
Epikote Resin 320	Epoxy-resin based on bisphenol A/F	100	100
Neuburg Silceous Earth	Filler		50
Total		100	150
Component B			
Epikure Curing Agent 05903	Hardener (mannich base)	34	34
Hypro 1300x16 ATBN	reactive liquid rubber	8.5	8.5
Total A + B		142.5	192.5

Filler characteristics

	Partic	Particle size C		olor CIELab		Oil	Density	Specific	Surface treatment		
	d ₅₀	d ₉₇	L*	a*	b*	absorption	sorption		absorption surface area BET		
	[µm]	[µm]	[-]	[-]	[-]	[g/100g]	[g/cm³]	[m²/g]			
Sillitin V 85	4.5	18	93.3	1.0	9.2	45	2,6	10	-		
Sillitin Z 86 puriss	1.9	9	93.9	1.0	9.7	55	2,6	12	-		
Aktisil PF 777	2.2	10	93.6	1.2	10.0	35	2,6	9	alkyl functionalized		

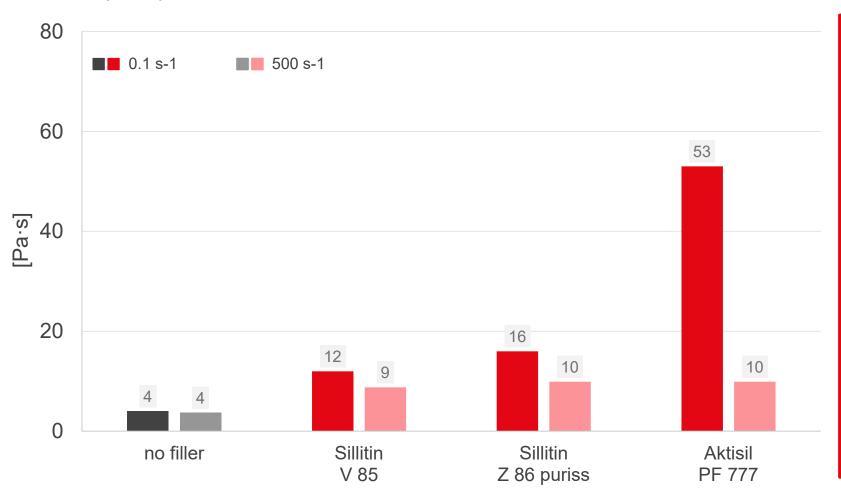

Structure of Neuburg Siliceous Earth

Viscosity Component A

MCR 300, platte/platte PP25, measuring 7d after preparation

The addition of the filler increases the viscosity noticeably, especially in the low shear range.

Sillitin V 85 remains at a moderate level despite the dosage of 50 GT, whereas Aktisil PF 777 gives the highest viscosity

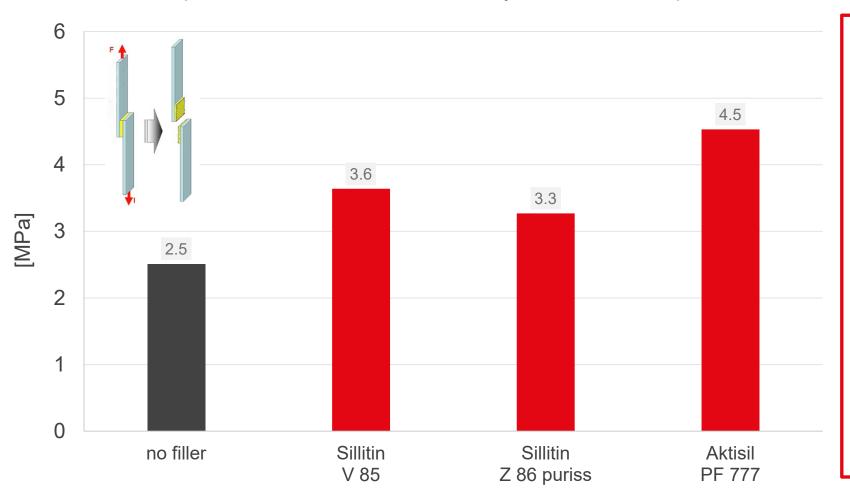

Storage stability

Sedimentation	storage at room temperature for up to 8 weeks: no sediment	
Rheology	storage at room temperature for up to 12 weeks: no change in rheology	

Viscosity Component A+B

MCR 300, plate/plate PP25

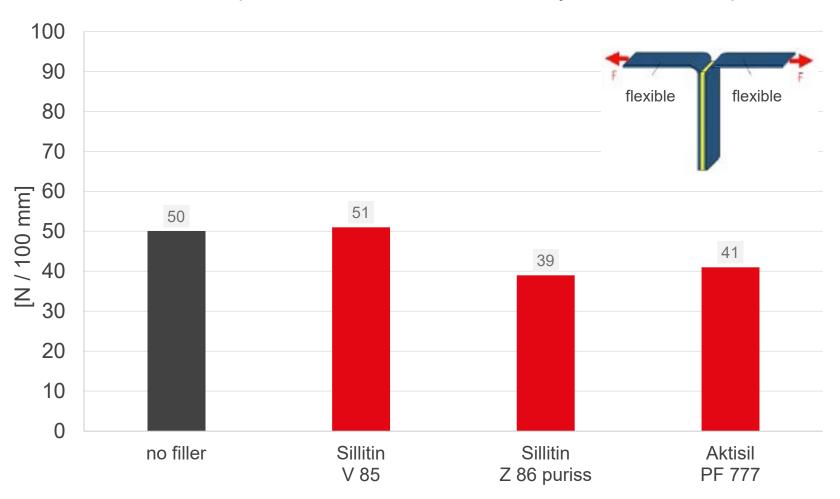
After adding the hardener:


Sillitin V 85 still shows the lowest viscosity, whereas the other fillers tested result in an ascending ranking of low shear viscosity or yield point.

Aktisil PF 777 marks the highest value and thus the most pronounced shear thinning and thixotropy.

Lap Shear Strength

DIN EN 1465, Cr3 passivated aluminum, adhesive layer thickness 100 µm



Neuburg Siliceous Earth results in a noticeable increased lap shear strength.

T-Peel Test

DIN EN ISO 11339, Cr3 passivated aluminum, adhesive layer thickness 100 µm

The peel resistance with Neuburg Siliceous Earth is approximately at the level of the unfilled formulation.

Rating

	Sillitin V85	Sillitin Z 86 puriss	Aktisil PF 777
Viscosity	^	个个	个个
Lap shear strength	+	0 / +	+
Peel resistance T-Peel	0	0 / -	0 / -
Cost aspect	+++	+++	++
Note	standard product	easy to disperse	rheologically active

Benefits of Neuburg Siliceous Earth vs. unfilled formulation:

comparable or higher lap shear strength

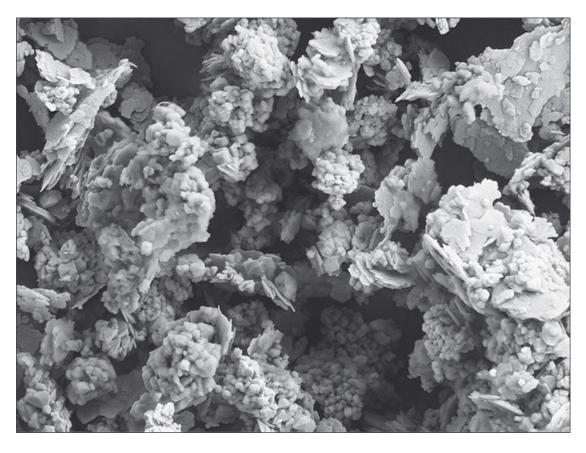
comparable peel resistance

positive cost aspect through the use of filler

We supply materials for good ideas!

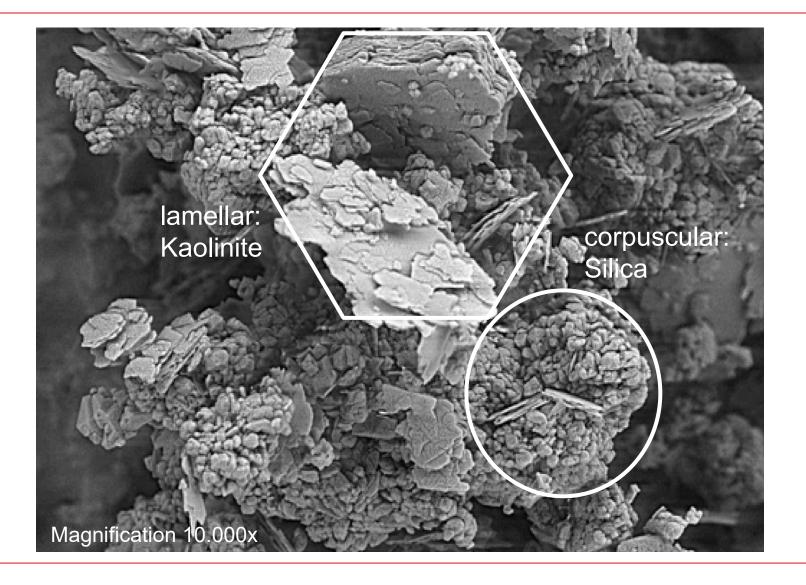
HOFFMANN MINERAL GmbH Muenchener Straße 75 DE-86633 Neuburg (Donau) Phone: +49 8431 53-0

Internet: www.hoffmann-mineral.com E-mail: info@hoffmann-mineral.com


Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.

22 VM-00/0624/06.2024

Neuburg Siliceous Earth


A natural combination of corpuscular Neuburg silica and lamellar kaolinite: a loose mixture impossible to separate by physical methods. The silica portion exhibits a round grain shape and consists of aggregated primary particles of about 200 nm diameter.

Morphology of Neuburg Siliceous Earth

Preparation System 1

Component A	Speedmixer					
	Resin, Abiflex and silane + first part of filler + rest of filler Clean lid and rim Clean lid, rim and bottom Clean lid, rim and bottom	60 s @ 1000 rpm + 120 s @ 2000 rpm 30 s @ 800 rpm 30 s @ 800 rpm 60 s @ 1000 rpm 300 s @ 2000 rpm 60 s @ 1000 rpm + 120 s @ 2000 rpm				
Mixing	Speedmixer					
Component A+B	60 s @ 1000 rpm + 120 s @ 2000 rpm					

Results in tabular form – System 1

			no filler	fumed silica	Sillitin V 85	Sillitin Z 86 puriss	Aktisil PF 777	Aktisil Q
Rheology								
Component A	Viscosity @ 0.1 s ⁻¹ Viscosity @ 100 s ⁻¹	Pa·s	17 11	463 22	118 21	213 24	325 21	50 20
Component A+B	Viscosity @ 0.1 s ⁻¹ Viscosity @ 100 s ⁻¹	Pa·s	7 6	102 9	27 10	59 12	80 12	15 10
Storage stability	Component A							
Sedimentation, 8 Change in rheolog	<u> </u>		-	without no	without no	without no	without no	without no
Mechanical prop	Mechanical properties							
Lap shear strengt Cr3 passivated al		MPa	2.8	3.0	3.4	2.3	3.5	3.1
Peel resistance Technology Cr3 passivated al		N / 100 mm	22	20	61	62	70	72

Preparation – System 2

Component A	Speedmixer						
	Resin + first part of filler + rest of filler Clean lid and rim Clean lid, rim and bottom	30 s @ 800 rpm 30 s @ 800 rpm 60 s @ 1000 rpm 300 s @ 2000 rpm					

Mixing Component A+B

Speedmixer

60 s @ 1000 rpm + 120 s @ 2000 rpm

Results in tabular form – System 2

			ungefüllt	Sillitin V 85	Sillitin Z 86 puriss	Aktisil PF 777
Rheology						
Component A	Viscosity @ 0.1 s ⁻¹ Viscosity @ 100 s ⁻¹	Pa·s	1 1	27 5	48 6	138 9
Component A+B	Viscosity @ 0.1 s ⁻¹ Viscosity @ 100 s ⁻¹	Pa·s	4 4	12 9	16 10	53 10
Storage stability Co	omponent A					
Sedimentation, 8 w (Change in rheology,			-	without no	without no	without no
Mechanical proper	ties					
Lap shear strength Cr3 passivated aluminum, 100 µm		MPa	2.5	3.6	3.3	4.5
	Peel resistance T-Peel Cr3 passivated aluminum, 100 µm		50	51	39	41

Overview tests

Rheology	MCR 300, PP25, 1 mm gap, 23 °C, logarithmic flow curve from 0.05-500 s ⁻¹ (rotation)	
Sedimentation	Storage 8 weeks at room temperature	
Application	using a disposable syringe, immediately after mixing the two components	
Lap shear strength	DIN EN 1465 Substrate: Adhesive layer: Curing: Test speed: Evaluation:	Aluminum 5005 H24 (AlMg1(B)) with Cr3 passivation 100 µm, adjusted by 0.2 or 0.5 Vol-% glass beads (on total batch) 14 days at standard climate 23/50 1 mm/min Average maximum stress (tensile shear strength)
T-peel test	DIN EN ISO 11339 Substrate: Adhesive layer: Curing: Test speed: Evaluation:	Aluminum 3003 H24 (AlMg1Cu) with Cr3 passivation 100 µm, adjusted by 0.2 or 0.5 Vol-% glass beads (on total batch) 14 days at standard climate 23/50 100 mm/min Average peel force, according to standard based on 100 mm sample width

