SILFIT Z 91

TECHNICAL DATA SHEET – Field of application: THERMOPLASTICS

1. Description
SILFIT Z 91 is a natural combination of corpuscular silica and lamellar kaolinite, which has been subjected to a heat treatment. The components and the thermal process lead to a product that offers special performance benefits as a functional filler.

Characteristics:
- **Appearance:** free-flowing powder
- **Color CIELAB scale:**
 - L*: 95
 - a*: - 0.1
 - b*: 1.0
- **Sieve residue > 40 µm:** 10 mg/kg
- **Volatile matter at 105°C:** 0.2 %
- **Density:** 2.6 g/cm³
- **Particle size distribution:**
 - D50: 2 µm
 - D97: 10 µm
- **Spec. surface area BET:** 8 m²/g
- **Oil absorption:** 55 g/100 g
- **pH value:** 6.5
- **Equilibrium moisture content at 25 °C:**
 - 50 % relative humidity: 0.12 %
 - 80 % relative humidity: 0.22 %
 - 90 % relative humidity: 0.54 %

Packaging:
- **Paper bags:** à 25 kg
- **PE bags:** ≤ 20 kg
- **EVA bags:** ≤ 20 kg
- **Big Bags:** 600 – 900 kg
- **Bulk:** on demand

Shelf life:
- Unlimited if stored properly under dry conditions.

2. Applications
In thermoplastics SILFIT Z 91 is used as a functional filler either by itself or in combination with other fillers or reinforcing fibers. SILFIT Z 91 should be considered whenever low warpage, perfect surface finish and scratch resistance are as important as good melt flow, high strain at break and high impact strength.

The addition of maleic anhydride-grafted polypropylene (MAPP) enhances the performance of SILFIT Z 91 in PP compounds resulting in improved tensile strength as well as flexural strength and particularly additional improvement of scratch resistance. For higher requirements the Aktifit AM is recommended.

In wood plastic composites (WPC) SILFIT Z 91 improves mechanical and surface properties including scratch resistance. For higher requirements the Aktifit AM is recommended.

In white pigment masterbatches SILFIT Z 91 replaces up to 30 % relative of the TiO₂ concentration, largely maintaining opacity and amplifying bluish undertone of the TiO₂.

In films SILFIT Z 91 achieves very good results as an anti-blocking agent, in PET comparable to precipitated silicas: very good transparency and low haze combined with a low coefficient of friction and cost advantage. Furthermore applying SILFIT Z 91 in infrared (IR) greenhouse and agricultural films it performs in very high light transmission and very low haze at medium IR absorption. The latter can be increased by using SILLITIN V 88.

Dosage:
- **Films:**
 - Anti-blocking additive: 500 ppm (PET) to 1 % (LDPE)
 - Functional filler in films: 5 to 15 %
 - WPC: 1 % to 10 %
- **White (TiO₂) masterbatches:** 10 to 30 % rel. of TiO₂, ratio 1:1 to 1:2 m/m
- **Compounds:**
 - 20 to 50 % without other fillers
 - 10 to 30 % in combination with glass fibers

3. Benefits
In comparison with the unfilled polymer, the use of SILFIT Z 91 will result in the following advantages:
- improved scratch resistance
- higher hardness
- higher stiffness (modulus)
- higher tensile and flex strength
- improved heat distortion temperature
- higher heat conductivity
- improved dimensional stability with varying humidity conditions (polyamides)

In comparison with other mineral fillers and anti-blocking agents, SILFIT Z 91 offers the following advantages:
- very low sieve residues
- easy feeding and metering
- good wetting and dispersion properties
- high melt flow rates
- low warpage
- excellent surface finish
- higher scratch resistance
- high impact strength
- no graying of black-colored compounds
- high opacity in TiO₂ pigmented films and compounds
- complies with the standards on articles in contact with foodstuffs of the BfR and FDA
4. Application examples:

- **Polyamide, 40 % filler, no graying of black-colored compounds**

 CIE-Lab Brightness L^*

<table>
<thead>
<tr>
<th>Aktifit AM</th>
<th>Calcined clay 1</th>
<th>Calcined clay 2</th>
<th>Wollastonite</th>
<th>Silfit Z 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>[bar graph]</td>
<td>[bar graph]</td>
<td>[bar graph]</td>
<td>[bar graph]</td>
<td>[bar graph]</td>
</tr>
</tbody>
</table>

- **PET-Film, Anti-blocking, 15 µm film thickness**

 Coefficient of Friction film/film, static

<table>
<thead>
<tr>
<th>without additive</th>
<th>Fumed silica</th>
<th>Precipitated silica 1</th>
<th>Precipitated silica 2</th>
<th>Silfit Z 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>[bar graph]</td>
<td>[bar graph]</td>
<td>[bar graph]</td>
<td>[bar graph]</td>
<td>[bar graph]</td>
</tr>
</tbody>
</table>

- **PP Compounds with enhanced scratch resistance, 40 % filler**

 Brightening delta L^* of black compounds due to scratch pattern

 Copolymer

<table>
<thead>
<tr>
<th>Delta L^*</th>
<th>Fine grain surface (K31)</th>
<th>Coarse grain surface (K09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talc</td>
<td>[bar graph]</td>
<td>[bar graph]</td>
</tr>
<tr>
<td>Silfit Z 91</td>
<td>[bar graph]</td>
<td>[bar graph]</td>
</tr>
<tr>
<td>Aktifit AM</td>
<td>[bar graph]</td>
<td>[bar graph]</td>
</tr>
</tbody>
</table>

 Homopolymer

<table>
<thead>
<tr>
<th>Delta L^*</th>
<th>Fine grain surface (K31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talc</td>
<td>[bar graph]</td>
</tr>
<tr>
<td>Silfit Z 91</td>
<td>[bar graph]</td>
</tr>
</tbody>
</table>

For more information about Silfit Z 91 in thermoplastic applications, please see http://www.hoffmann-mineral.com/Industries/Thermoplastics

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.